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CENTRAL SIMPLE ALGEBRAS'

BY
LOUIS HALLE ROWEN

ABSTRACT

Wedderburn’s factorization of polynomials over division rings is refined and
used to prove that every central division algebra of degree 8, with involution,
has a maximal subfield which is a Galois extension of the center (with Galois
group Z. B Z, P Z.). The same proof, for an arbitrary central division algebra of
degree 4, gives an explicit construction of a maximal subfield which is a Galois
extension of the center, with Galois group Z,€) Z,. Use is made of the generic
division algebras, with and without involution.

§0. Introduction and preliminaries

Suppose R is a ring. The center of R is {c € R ]cr =rc forallrin R}L.If R is
simple (i.e. no proper nonzero ideals), then the center of R is obviously a field F,
over which R is a finite dimensional vector space; if the dimension is finite then
we call R a central simple F-algebra. There is little doubt that central simple
algebras lie at the heart of noncommutative algebra. The study of central simple
F-algebras has taken two directions—the arithmetic approach (based on as-
sumptions on F) and the algebraic approach (describing the structure of R,
without regard to the arithmetic of F). Of course, these two methods have
considerable interplay (cf. [2]), but there are a number of positive algebraic
results not requiring arithmetic, and this paper will be purely algebraic in nature.
The classical work on central simple algebras is [1], from which we shall quote a
number of standard results at the outset.

F always denotes a field. If A is an F-algebra then [A :F] denotes the
dimension of A as an F-vector space. The obvious example of a central simple
algebra is M, (F), the algebra of n X n matrices with entries in F. Another
example of a central simple algebra is a division algebra (of finite dimension over
its center), and, by a celebrated theorem of Wedderburn, any central simple
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F-algebra has the form M, (D)= M,(F)Q:D, for suitable number m and
suitable division algebra D. Thus, the study of central simple algebras can largely
be reduced to the study of division algebras, and we shall concentrate henceforth
on division algebras. (In §5 another method will be given of using facts about
division algebras to prove theorems about central simple algebras in general.) By
[1, theor. 4.28], if F is finite then M, (F) is the only central simple F-algebra, and
the structure theory is quite trivial; so all of our fields are assumed to be infinite.

Henceforth, C is a field and D is a central simple C-algebra. It is easy to see
that D®cC is a central simple C-algebra, for any extension field C of C. In
particular, if C is the algebraic closure of C then D ®C = M,, (D)), for suitable
m and suitable division algebra D, of finite dimension over C. But for any
element d, of D,, the subfield C'(d.) of D is a finite dimensional extension of C,
implying C(d,)= C,so D, = C. Thus [D : C] = [M.,.(C): C]= m?, and we call m
the degree of D. Division algebras of degree 2 are called quaternion algebras.

By C-subfield of D we mean subfield of D containing C. If d € D, C(d)
denotes the C-subalgebra of D generated by d, easily seen to be a C-subfield.
Every C-subfield of D can be embedded in a maximal subfield, which is
obviously a C-subfield, and we shall be very interested in the set of maximal
subfields of D.

Given subsets A, B of D, write [A, B] to denote {ab - ba ]a EA,beE B}
Given a subalgebra A of D, A’={d € D |[d, A] =0} is also a subalgebra of D,
called the centralizer of A; if A is a C-subfield then A’ = M,(A), where
t{A : Cl=degree of D (by [l, theor. IV.12]). Moreover, if A is a maximal
subfield, then clearly ¢+ =1 (for otherwise A’ contains a subfield of D which
properly contains A), implying [A : C] is the degree of D. Thus the maximal
subfields of a division algebra of degree n are precisely the subfields which are
n-dimensional over the center.

If A is a C-subaigebra of D and A is also a central simple C-subalgebra,
then, for B = centralizer of A, we have D = AQ-B (by [1, theor. IV.13]),
implying B is also central C-simple.

Suppose A is any simple C-subalgebra of D and ¢ is an automorphism of A
which fixes C. Then by the famous Skolem-Noether theorem ([1, theor. 1V.14]),
there exists an element d in D, such that dad ™' = ¢(a) for all elements a of A
l.e. ¢ can be lifted to an inner automorphism of D. We shall use the
Skolem-Noether theorem repeatedly in our applications. The underlying princi-
ple is, given a separable field extension K of C, one has nontrivial automorph-
isms of K, fixing C, and these automorphisms can be realized via elements of D.

Let us present an important example of this method. If D has degree n, and if
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there exists a maximal subfield K Galois over C with Galois group G, then each
element ¢, of G can be realized by a map of the form k » dkd7' for all k in K.
Since G =[K: C]= n, we have n such elements d, = 1, d.," - -, d., and one can
easily prove that D = Kd, + Kd,+ - - + Kd, (by [1, theor. V.2]). This gives us
considerable information about D. Call such a division algebra a crossed product.
Every division algebra of degree 2,3,4,6, or 12 is a crossed product (cf. [1,8])
although not every division algebra is a crossed product (cf. [2]). Using the
method of [8], developed and refined in §1, we shall give an explicit way of
constructing the maximal subfield which is Galois, for n = 4, and show for n = 8
that every division algebra with involution (cf. §5) is a crossed product. These
results are made clearer through the use of the generic division algebras with and
without involution, defined respectively in §5 and §2.

In the process of building a Galois extension of C in D, when D has even
degree, we are first interested in building quadratic extensions. Thus, call an
element d square-central if d& C but d*€ C. Maps will be written exponen-
tially, i.e. a® for ¢(a). Also, the symbol C denotes proper inclusion. If
C CK,CK, are C-subalgebras of D, then obviously [K,: C] is a proper divisor
of [K.: C].

§1. Wedderburn’s method of splitting polynomials

Let D{A]= D®C[A], A a commutative indeterminate over C; i.e. D[A] is
the ring of polynomials in D. In this section we recall Wedderburn’s method [8]
of factorization in D{A]. Given polynomials f(A), g(A), we divide f(A) into g(A)
by writing g(A) = g(A)f(A)+ r(A), where r(A), g(A) € D[A] and either r(A) =10
or deg r(A)<deg f(A); i.e. we perform divisions from the right. Since D[A] is a
domain, this procedure is well defined. If r(A) =0, we say f divides g. Writing a
polynomial g(A) = ZdAx’, we define g(d) to be £dd’, for d in D.

LeEmMMmAa 1.1. If f(A)=A —d, then r(A) = g(d), so A — d divides g(A)— g{(d).

Proor. Induction on degg(A). If g(A)=2i_odA’ then g(A)—dA'"'f(A)=
(d 1+dd)A'"""+ 255 dA". By induction, dividing f into g —dA'"'f yields a
remainder (di-, +dd)d' '+ 2{5dd' = Zi_,dd' = g(d). But this remainder is
clearly also r(A). Hence r(A)=g(d), and f divides q(A)f(A)=g(A)— g(d).

Q.E.D.

CoroLLary [.2. (A — d) divides g(A) iff g(d)=10.

ProposiTioN 1.3. Suppose A — d, divides g(A)h(A) and not h(A). Let d =
h(d.). Then (A — ddyd™") divides g(A).
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Proor. From Lemma 1.1, A — d, divides h(A)—h(do)= h(A)—d, and d# 0.
Thus A — d, divides g(A)h (L) — g(A)d. But A — d, divides g(A)h(A) by assump-
tion; thus A —d, divides g(A)d. Write g(A)d = qg(AXA —do). Then g(A)=
(qA)d ) d(A — do)d )= q(A)d (A — ddod™"), implying A —ddod™" divides
g(A). Q.E.D.

If d € D, we mean the usual by “minimal polynomial” of d and “characteris-
tic polynomial” of d; i.e. these polynomials have coefficients in C, but may be
viewed in D[A] since C[A]CD[A] canonically. For convenience, we assume
these polynomials are monic, i.e. with leading coefficient +1.

Lemma 1.4. Ifg(A) € D[A] and g(d) = 0 for all conjugates d of an element x,
in D, then g()) is a multiple of the minimal polynomial of x..

Proor. Take a supposed counterexample g(A)= Zi.,diA’, with ¢ minimal;
multiplying on the left by d7', we may assume that d, = 1.

For any nonzero y in D, we see that y "'dy is a conjugate of d (thus of x,), so
0=23{od(ydy 'Y = Zdyd'y™", implying Zi_,(y 'diy)d’' = 0. But we also have

‘_odid' = 0. Subtracting, we get 0= Z{_o(y 'dy ~ d))d' = —y 'Z[y, d:]d’; thus
Zioly, di)d =0.

In other words, if h,(A) = Zi_,[y, d;]A’, then h,(d) =0 for every conjugate d
of xo. But [y,d.]=[y,1] =0, so h,(A) has degree =t - 1. Hence, by induction,
the minimal polynomial m(A) of x, divides h,(A)=[y,g(a)]. Now
write g(A)=f(A)m(A)+r(r), with degr(A)<degm(r). Then h,(A)=
[y, f(M)Im(A)+ [y, r(*)), for each y in D, implying r(A)€ C[A]. But r(d)=
g(d)— (fm)(d) = 0 since the coefficients of m(A) are in C (and thus commute
with d). Since r(A) has smaller degree than the minimal polynomial of d, we
conclude r(A)=0. Q.E.D.

THEOREM 1.5. Let p(A) be an irreducible monic polynomial in C[A). If
p(d\) =0 for some element d, in D, then p(A) “splits” into linear factors in D[A],
and p(A) is the minimal polynomial of d..

Proor. Write p(A)=g(A)A —d.)---(A — d,), such that g(A) has minimal
possible degree. Let h(A)= (A —d.)---(A — d,), knowing that ¢ Z 1 by assump-
tion. We claim that h(d) = 0 for every conjugate d of d,. Otherwise if h(d) # 0,
we still have p(d)=0 since p(A)E C[A], so, by Propositon 1.3,
(A — h(d)dh(d)™") divides g(A). Thus we can write d,,, = h(d)dh(d)™" and write
p(A)=g'(A)h’(A) where g(A) = g'(A)(A — d,.,) and h'(A) = (A — d,.1)h(A), con-
trary to the minimality of the degree of g. This proves the claim.

But, by Lemma 1.4, the minimal polynomial m (A) of d, divides & (A ), and thus
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p(A). Since p(A) is irreducible in C[A], we conclude that m(A)=h(A)=p(A),
proving the theorem. Q.E.D.

ReEMark 1.6. In the proof of Theorem 1.5, we can take d, to be
[y,d\]d\[y, d.]”", where y is any element not commuting with d,.

Proor. If [y, d\] #0 then yd\y ™' # d, and so, writing p(A) = f(A)(A — d,), we
have (by Proposition 1.3) A — d, divides f(1), where

d, = (ydiy™" = d\)(ydiy Nydiy ™' —d\)™
=[y,di]y 'ydiy'y[y, d]"
=y, d)d\y,d\]"".

Remark 1.7. In the proof of Theorem 1.5, if [d,,d\]#0, we can take
d3 = [dz, dl]dz[dz, dl]—l.

Proor. Write p(A) = f(A)(A — d2)(A — d)) = f(A)(A* —(d, + d2)A + dod,). But,
by hypothesis, (d,)*~ (d\ + d»)d, + d.d, = [d,, d\] # 0. Hence by Proposition 1.3,
we can take ds = [d,, d\]d:[d., d\]7".

ReMark 1.8. If g(A) has coefficients in C and g(A)=gq(Ar)f(A) then
g(A)=Ff(A)q(r).

Proor. (f(A)g(A)F(A)=F(ANq(A)f (1)) = f(A)g(A)=g(A)f(A). Since D[A]
is a domain, f(A)g(A)=g(A).

Cororrary 1.9. If p(A)=(QA —d.)---(A—d,) and p(A)E C[A], then, for
each i, pAM)=A—d)---(A—-d)(A~d)--- (A —di.1).

Proof. Put g(A)=(A—d.) -+ (A —di)) and f(A)=(A—d)--- (A —d,) and
apply Remark 1.8.

§2. The role of generic division algebras

We shall give a brief presentation of the famous division algebras of generic
matrices of Amitsur [2], recast through the use of central polynomials in [5]. First
we fix n. Let F be an infinite field, and let F(¢)= F(¢§”) be the polynomial
algebra in commutative indeterminates £ over F, 1=i,j =n, 1=k <«.The
algebra of generic n x n matrices F™{Y} is defined to be the F-subalgebra of
M, (F(¢)) generated by all generic matrices Yi = (), 1=ij=n, for 1=k <
o, The elements of F™{Y} can be written in the form f(Y,,---, Y.), where
f(Xi, -+, Xk) is a formal polynomial in k (noncommuting) indeterminates
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X, -+, X« Given a central simple F-algebra R of degree n, it is easy to show
that f(Y,,---, Yi)=0 iff, for all elements r, of R, f(r;," -, n)=0. (In this case
f(Xi, -, X&) is called an identity of R.) Now let C, be the center of F™{Y}. Cy is
contained in F(¢) (viewing F(¢) as scalar matrices). Let F®(Y) be the subring of
M, (F(¢)) generated by F™{Y} and the inverses of all elements of Cy. F™(Y) s
a division algebra of degree n, called the algebra of generic n X n matrices, and
is a division algebra cf. {5, §3]. This result is due to Amitsur, who proved in [2]
that Q*(Y) does not have a maximal subfield which is a Galois extension of the
center, if n is divisible by 8 or the square of an odd prime. Let us now state

THeOREM A (i) If F™(Y) has a maximal subfield which is a Galois extension
of Cent F*™(Y), with Galois group G, then every central simple division F-algebra
of degree n has a maximal subfield which is a Galois extension of F, with the same
Galois group G.

(i) If n>2 then F™(Y) has no central quaternion subalgebras.

Indeed, the first assertion is [2, theor. 5] (cf. proof in [4, theor. 4]). The second
assertion follows immediately from [5, theor. 2].

One can improve on Theorem A by making the following observation, which
is well-known:

ProposimioN 2.1. If f(Y., -+, Y)g(Y,,---,Y,)"' are nonzero elements of
F(Y), 1=i = m, where f(Y,--,Y.), g(Yy,---,Y.) are elements of F"{Y},
then, for each central simple division F-algebra D, there are elements d,, - - - ,d, of
D, such that f,(d,,- - - ,d)gi(dy, -+ ,d.)"' #0 for all i; moreover, in such a set-up,
we may always assume g (Y,,-+-,Y.)€ C,.

Proor. Write f; for fi(Y,,--+,Y.), for convenience. We know already that
fig" has the form fi(g})™' where fi€ F™{Y} and g!€ C,. Thus fi= fg 'gi=
fgig7', implying 0= fig, — fig!, so fig, — fig: is an identity of D. On the other
hand, Iiffig,giis not an identity of D, the product taken over all i between 1
and m, so, for suitable elements d,,---,d, of D,

[1fidy - d)fids, - - d)gi(ds, -+ d)gi(ds, - -+ ,d) # 0.
It follows immediately that
07 fi(di,--+,d)gi(dy, -+, d)" = filds, -+, d)gidy, -+ ,di)™!

for each i, and the assertions follow immediately. Q.E.D.
Thus many explicit constructions for F"(Y') give general constructions for all
central simple division F-algebras, and proofs by constructing the suitable object
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in F™(Y) will be called explicit proofs. We feel that explicit proofs are very
desirable, especially since they build up knowledge about F*(Y).

§3. Division algebras of degree 3

In this section we assume that D is a division algebra of degree 3, i.e.
[D:C]=3"=9. In this case, Wedderburn [8] proved that there is an element
do € D — C such that dj € C. Since the proof is beautiful and short, we include
it here.

Suppose that there are elements d, and y, such that d; does not commute with
d,=[y,d\)d\[y,d\]”’, and let p(A)=Zi_gar'(a; in C, e =1) be the minimal
polynomial of d,. Then ¢ = {C(d,): C], a divisor of 3, so t = 3. By Theorem 1.5
and Remark 1.6, we can write p(A) = (A — d3)(A — d.)(A — d,) for suitable d; in
D. We claim that d, = [d,, d»] “works”. First we note that —a, =d;+ d,+ dy;
commuting with d, yields [ds, d\]=[d, d2] = do. Similarly, commuting a,
with d, yields [d,, d;}=[d,, d:} =d,. Note that by Corollary 1.9, p(A)=
(A — d.3)(A = d2)(A — d.1) for each cyclic permutation 7 of (1,2,3), and we
just saw that [d..,d,]= £do#0. By Remark 1.7, we can take d.;=
[dns, dei]dnoldas, dei] ™" = doda2d o' But since d.s is determined by d.. and dm,
d.; must necessarily equal this value. Thus (taking subscripts modulo 3) we have
di., = dodidy', for each i. We claim this implies d3 € C. Otherwise [C(d3): C] =
3, implying C(d3) is a maximal subfield (and thus its own centralizer). In this
case, d; and d, would be elements of C(d3), which-is nonsense since d,d, # d.d,.
This yields the claim.

So all we have to do is compute d, and d, for the generic division algebra
F®(Y). This is trivial: take d, = Y, and y = Y,. Clearly in this case 0 # {d,, d>] =
[Y.,[Y; Yi]Y\[Y,, Yi] '], seen by specializing Y,, Y- to suitable matrices with
integral coefficients. Schacher and Small (unpublished) computed the corres-
ponding polynomial whose cube is central. Anyway, we have proved here

THEOREM 3.1. Any division algebra of degree 3 has an element not in the
center, whose cube is in the center.

§4. Division algebras of degree 4

The structure of division algebras of degree 4 is well-known, e.g. there exists a
maximal subfield K of D such that Gal(K/C)= Z,Z, (cf. Albert {1, theor.
X1.9]). We shall obtain this result by constructing the subfield K in the case
D = F¥(Y), which then gives us a general construction, by Theorem A. For
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purposes of later application, our first theorem is given for any division algebra,
of arbitrary degree.

We carry the following notation: Suppose D has an element d, of (reduced)
trace 0, having degree 4. Then the minimal polynomial p(A) of d, has the form
A4 aA*+ ad + ay, where a; € C. Using Theorem 1.5, we have p(A)=
(A*+a’A + b')(A*+ aA + b) for suitable elements a, b, a’, b’ of D. In fact, in the
notation of Theorem 1.5, b = d,d, and a = —(d, + d,).

THEOREM 4.1. In the above notation, if 3 ¥ [D:C] and [C(a): C] =4, then
either a’>€ C or [C(a®): C]=2. If, moreover, [C([a, b]): C]=4, then either
[a,b)’ € Cor [C([a,b]):C]=2.

Proor. Matching coefficients in p(A) yields 0=a'+ a, so a’'= —a, and
w=a'a+b+b'=—-a’+b+b
a;=a'b+b'a=~-ab+b'qg
ao=b'b.

Substituting b’ = a,b™' yields the two equations
¢)) a=—a’*+b+ah™,
() a,= —ab+ab'a
Case I. [a,b]=0. Then a, = (achb™' - b)a, so
al=((aoh™'+ b)Y —4dag)a’ = (az + @’y — dao)a’
=(a?)’+2ay(a’) + (a3 — dao)a’.

Thus [C(a?):C]=3 and is relatively prime to 3 (since 3./ [D:C], by
hypothesis). Hence, either a’€ C or [C(a®): C]=2.

Case II. [a,b]#0. Then from (1), 0=[a;,b]= —[a®b], implying
C(a*)CC(a). (Obviously af C(a®), since ab# ba and a’b = ba®) Thus
[C(a®): C]<[C(a): C] =4, and we again conclude a’E€ C or [C(a®): C]=2.

This proves the first assertion, that a*€ C or [C(a®): C]=2. Now we
continue with w =[a,b]. As noted already in case II, 0=[a%b]=

ala,b)+[a,bla, implying aw = —wa. Hence wg& C(w?), so we have
[C(w?): C]<[C(w):C] =4, so, as before, we conclude that either w?€ C or
[C(w?): C]=2. Q.ED.

Note that if a* € C and w? €& C then the subalgebra of D generated by a and
w is quaternion. However, this is usually not the case.
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THEOREM 4.2. In D = F(Y), take d,=[Y,, Y2}, d:=[Ys,d\)d)[Y5 d\]™,
a=d+d,=[Y5di)Y;,di]', and b=d.d,. Then [C(a®):C)=2 and
[C(a,b)):C]=2.

Proor. By specializing to matrices, one sees easily that a’¢& C and
[a,b)*Z C. On the other hand, tr(d,)=0, and clearly [C(a): C]=4 and
[C([a, b]): C} =4, because the characteristic polynomial of each element has

degree =4.
Thus, in view of Remark 1.6 and Theorem 4.1, we have [C(a?): C]=2 and
[Cla,b]: C]=2. Q.E.D.

ProrosiTion 4.3. With notation as in Theorem 4.2, C(a’) and C([a, b}?) are
separable extensions of C.

Proor. If char(F)# 2 this is immediate. Even if char(F) =2 we know that
(a®y & C by specializing
LemMA 4.4. Suppose D is a division algebra with an element d, such that C(d)

is a separable quadratic extension of C. If x €D and d,=[x,d]#0, then
[di,d]#0, [d},d] =0 and C(d})C C(d)).

Proor. Since [C(d): C] =2, we can find elements ¢, ¢ in C, with d* = c¢d + ¢'.
Then dd,+d,d =[x,d’]=c[x,d]=cd,, implying dd,=d\(c—d). Clearly
d# ¢ ~ d (since otherwise 2d = ¢ € C, implying 2 =0, since d& C; then ¢ =0
and d is inseparable over C, contrary to hypothesis). Thus dd, # d.d. But
ddi=d(c—-d)d =did, implying [d},d]=0 and C(d})CC(d/) (since
[di,d]#0). Q.E.D.

THEOREM 4.5. If D has degree 4 then D has a maximal subfield K, which is a
Galois extension of C with Galois group 2B Z,. In fact, in F*(Y), notation as in
Theorem 4.2, K can be taken to be the product of the fields C(a’) and C([ Y, a’]’),
each of which is a quadratic extension of C.

Proor. By Theorem A, it is enough to prove the second assertion. Let d = a’
and d,=[Y,d]. By Proposition 4.3 and Lemma 4.4, we have [d,,d]#0,
[d3,d) =0, and, thus, C(d?)C C(d,). It is a simple matter to verify that di& C
(although one can argue this matter indirectly by showing that if d7 € C then D
would have a quaternion C-subalgebra which, by Theorem A, is an absurdity).

Thus [C(d3}): C] is a divisor of 4 other than 1, and [C(d}): C]<[C(d)):C]=
4; hence [C(d3): C] = 2. Since d} and d commute, C(d?)C(d) is a field, and it
remains only to show C(d}) N C(d) = C. Indeed, otherwise, d € C(d?), implying
[d, d\] =0, which is false. Q.E.D.
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It has long been known that every division algebra of degree 4 had a maximal
subfield which is a Galois extension of the center, with Galois group Z,P Z,, as
shown in [1, theor. XI.9]. However, Albert’s proof is quite complicated, and fails
to give an explicit construction of the maximal subfield.

§5. General facts about involutions

An involution of a ring is an anti-automorphism of degree 2. Any involution
(*) induces an automorphism of the center of degree 1 or 2; we say (*) has first
(resp. second) kind if (*) has degree 1 (resp. degree 2) when restricted to the
center. We write x * to denote (*) acting on the element x. One can induce an
involution on F™(Y) from the map switching Y,_, and Y. for each natural
number i; one concludes from [6, theor. 25] that this involution has the second
kind. Thus, in view of Theorem A, the existence of an involution of second kind
does not yield additional information (in terms of crossed products or quaternion
subalgebras) about a division algebra. Consequently, we shall restrict our
attention to involutions of the first kind; by ‘“‘involution” we shall mean
‘“involution of the first kind . We shall often want to modify the involution; to do
this we want some results of Albert. (R, *) will denote a ring R with involution
(*). Call an element r in R (*)-nice if r*= *r. If ¢,, ¢, are maps from R to R,
we write ¢,¢; to denote the map x » (x*)%,

REMARK 5.1. If r is a nice, invertible element of a ring with involution (R, *),
then the map J: x » rx*r™' (for all x in R) is an involution.

ProrosiTion 5.2. Suppose C = Cent(R) is a domain, every automorphism of R
fixing Cis inner, and (*) and J are involutions of R. Then there exists an invertible,
(*)-nice element r in R, such that x” = rx*r™' for all r in R. Moreover, r* =r".

Proor. Clearly, *J is an automorphism of R fixing the center; thus, by
hypothesis, there is an invertible element r in R, with x*’ = rxr™' for all x in R,
Replacing x by x*, we have x’ = rx*r™' for all x in R.

We claim that r is (*)-nice. Indeed, for all x in R, (r*r " )x'(r*r")'=
rXx*(r'y* = (r'xr)* = (x7*)* = x’, implying r*r™' € C. Thus r* = ¢r for some ¢
in C. Hence r = (r*)* = (¢r)* = ¢*r, implying (¢’ — 1)r = 0. Since r is invertible,
we have ¢’=1. Hence (¢ — 1)(c + 1)=0; since C is a domain, we conclude
¢ = =1, so r is (*)-nice. The last assertion is immediate. Q.E.D.

The above proof was essentially that of Albert [1, theor X.11], but we have
included it because it motivates the other general results of this section. First, we
call (*) and (J) equivalent if the element r of Proposition 5.2 is symmetric (i.e.
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r*=r). It is easy to see that this is an equivalence relation, and thus there are at
most two equivalence classes of involutions for a ring R satisfying the hypoth-
eses of Proposition 5.2; in fact, R has two equivalence classes of involutions
precisely when R has invertible antisymmetric elements (under a suitable
involution).

Say (R, %) is isomorphic to (R, J) if there is an automorphism ¢ : R — R such
that *¢ = ¢J, i.e. ¢ preserves the involutory structure. Now suppose R = M,.(C)
and C is algebraically closed. It is easy to show that two involutions (J) and (*)
are equivalent iff (R, *) and (R, J) are isomorphic. In this case, one isomorphism
class of involutions is represented by the transpose which we call (¢); the other
isomorphism class exists iff there exist invertible antisymmetric matrices in R,
which is the case iff n is even and char(C) # 2. If n = 2m, define the canonical
symplectic involution (s) by

(A B)S _ ( D’ - B’)
C D - A')
where A, B, C,D are m X m matrices. The canonical symplectic involution is a

representative of the second equivalence class; indeed, if (*) = (t) and (J) = (s),
then, in the notation of Proposition 5.2, we can take

_ ( 0 I)
-1 0/’
where I denotes the m X m identity matrix.

Now let R be central simple of degree n, with involution (*). Then, if C is the
algebraic closure of C = Cent(R), (*) induces an involution (*) on M,(C) =~
RR:C, given by (Er®¢&)* = Sri®¢, where r, €R, & € C. We say (*) has
orthogonal (resp. symplectic) type on R if (*) is equivalent to () (resp. to (s)) on
M,(C). The type is well-defined, and we are interested in symplectic type
because of

ProposiTioN 5.3. If (R, *) is a central simple algebra of degree n with symplec-
tic involution, then every symmetric element has degree =n/2.

Proor. Let x* = x. If C is the algebraic closure of C = Cent(R), then x has
degree = n/2 over C (in M,(C)), by [3, pp. 230-231] (which makes use of the
“Pfaffian”). Using the properties of tensor product, one easily shows that x has
degree = n/2 over C. Q.E.D.

If D is a division algebra with involution, then n is a power of 2 (cf. [1, theor.
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X.19]). Let us now record one more fact about transfer of involution, with proof
as in Proposition 5.2.

ProrosiTion 5.4. Suppose (D, *) is a central division algebra with involution,
and K is a nonmaximal C-subfield of D. If K has an automorphism ¢ of degree
=2, then the map ¢ *: K — K*" can be lifted to an inner automorphism of D, with
respect to an element that can be chosen to be symmetric (resp. antisymmetric).

PRrROOF. ¢* is an isomorphism from the field K to the field K**. Hence, there is

an element y of D, such that yky "= k*" for all k in K. Thus
Oy TR(G Ty =) kY = (ke y ) =kt =k,

so [y~'y* K] =0, implying y* € yK’, where K’ is the centralizer of K. Thus
y+y*€yK’'andy - y* € yK'. Since any nonzero element of yK' could be used
in place of y, we are done unless every element of yK' is antisymmetric (resp.
symmetric); i.e., for fixed p €{-1, + 1}, we would have (ya)* = pya for all
elements a in K’'. In particular 1€ K’, so y* = uy, implying uya = (ya)* =
a*y*=a*uy,soyay ' =a*forall a in K'. In particular, for any elements a,, a,
of K', we would have (a;a,)* = a%at = (ya.y Yyay ') = ya,a\y ' = (a.a,)*,
implying a,a, = a.a,, so K' is commutative. This is impossible if K is nonmaxi-
mal, so we have a contradiction. Q.E.D.

CoRrOLLARY 5.5 Suppose (D,*) is a central division algebra with involution,
and K is a nonmaximal C-subfield of D with an automorphism ¢ of degree =2,
Then there are a symplectic-type involution (J) and an orthogonal-type involution
(J') which yield ¢ when restricted to K.

Proor. By Proposition 5.4, there is a symmetric element y, as well as an
antisymmetric element y’, such that yky ™' = y’ky’™' = k*", for all elements k of
K. Define J:x+»y 'x*y and J:x»y'x*y’ Obviously (J) and (J') are
nonequivalent involutions. Moreover, for all elements k of K, k’ =y 'k*y =
y '(k®)*"y =y 'yk®y 'y = k*; analogously, k' = k* for all elements k of K.

Q.E.D.

We would like to take the opportunity of apologizing for proving results which
are quite trivial but are not readily accessible in the literature.

Incidentally, the structure of central division algebras of degree 4 with
involution is now clear.

Tueorem B. If (D, *) is a central division algebra with symplectic-type involu -
tion and D has degree 4, then (D,*)= (Q,,*)®(Q,,*), where Q,, Q. are
*-invariant quaternion subalgebras of D.
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Proor. Take a symmetric element d& C. Then [C(d): C] = 2, so there exists a
nontrivial automorphism ¢ of C(d) over C. By Proposition 5.4, there is a
symmetric element y of D, such that ydy™' = d°. Thus d and y generate a
quaternion subalgebra Q,, invariant under (*). Let Q- be the centralizer of Q,.
Then Q, is invariant under (*) and Q,Q Q. = D. Q.E.D.

It follows immediately that every division algebra of degree 4 with involution
and having characteristic # 2 is a tensor product of quaternion subalgebras. The
characteristic 2 case is a bit more complicated, but can be done without difficulty
via Theorem 4.2. The decomposition of division algebras of degree 4 with
involution into quaternion subalgebras is due to Albert [1]. A famous conjecture
is the following generalization of Albert’s theorem.

CoONJECTURE 5.6. Every central division algebra with involution is the tensor
product of quaternion subalgebras.

For the rest of this paper we shall work towards positive partial results for
division algebras of degree 8, stated and proved in the next section. Incidentally,
the ease with which one can prove Albert’s theorem via Theorem B leads one to
believe that it is easier to work with the symplectic involution. Accordingly, let
us quote some results from [6, §5].

Assume n is even and, as in §0, let F(&) be the field generated by a set of
commutative indeterminates ¢}’ over F, 1 =i, j = n, 1 = k <. Fixing the set of
matric units {e;|1=i,j =n} of M.(F(¢)), we define the generic matrices
Y, = 27-&We; and their involutes Y|, where (s) is the canonical symplectic
involution of M, (F(¢£)). Let F™{Y,Y"} be the F-subalgebra of M,(F(¢))
generated by all the Y. and all Y. Note that any element of F™{Y, Y*} is a
“polynomial” in suitable Y, Yi,---,Y, Y] and will be written as
f(Y, Yi,--,Y, Y7) to denote this fact. Obviously (s) induces an involution on
F®™{Y, Y*} and, by [6, theor. 27], the central elements are scalars in M, (F(£))
and are thus invertible. Let F™(Y,Y") be the F-subalgebra of M,(F(¢))
generated by F“{Y,Y'} and all inverses of nonzero elements of
Cent F™{Y, Y*}. Again (s) induces an involution on F"(Y, Y*), clearly of
symplectic type (when char F# 2).

THEOREM C (|6, theor. 29)). F™(Y, Y*) is a central simple algebra of degree n.
F"™(Y, Y*) is a division algebra iff n is a power of 2.

The following crucial fact is an easy consequence of [6, theor. 27] (and the
technique of tensoring by the algebraic closure of F, as described before
Proposition 5.3):
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ProposiTion D. Suppose R is an arbitrary central simple F-algebra of degree n,
with involution (*) of symplectic type. An element f(Y, Y], - Y, Y:) of
F™{Y,Y*} is zero iff, for all elements ri,--- 1. of R, f(ri,r¥, - ,r,r*¥)=0.

The way we can use Proposition D is in

THEOREM E. Let C = Cent F"(Y,Y"), and suppose K = K\K,--- K, is a
subfield of F™(Y,Y"), with [K:C]= m. Also suppose

Ki = C(fl(yls Y;» Ty Yla Yj)g'(Ylv ?»' Ty Yl’ Yt)ﬁl)?

where f,(Y,, Yi, ) and g(Y,, Yi, ) are elements of F"™{Y, Y’}, for each i.
Then, for each central simple F-algebra D which is a division algebra of degree n
with involution () of symplectic type, there exist elements d, ,- - -, d, of D, such
that, for L, = F(f.(d.,d}, -+, d.d})g(d,,d}, -, d,d;})"), wehave L = L, - L,
is a subfield of D and [L:F]=m.

Proor. For simplicity, write f for f(Y,, Yi,---, Y, YI), etc. We claim that it
is enough to assume g € Cent F™{Y, Y*}. Indeed, by definition of F"™(Y, Y*),
we know that there are elements f' in F™{Y, Y‘} and g' in Cent F™{Y, Y},
such that fg~' = f'(g')"". Then fg’ = f'g,so fg'— f'g =0. Hence, forany d,, - -, d,
in D, such that g'(d,,d;, -+, d,d:)#0 and g(d,,d3, -, d,d;)#0, we have

f(didi, -, d,d)g'(d,di, -, d,d?)
~-f'(d,d3, -, d,d)g(d,di, -, d,d})=0.

Thus
f(di,di, -+, d,d)g(dr, di, -, d,dl)!
=f(ddi, - d,d)g'(d,di, -+ d,d})",

and the claim is established.

The rest of the theorem is proved exactly as [6, theor. 30 (ii)]. Q.E.D.

The corresponding statement holds for quaternion subalgebras (cf. [6, theor.
30 (iii)]), but we do not reproduce the proof because it is not relevant to the
results presented in this paper.

§6. Division algebras of degree 8, with involution

The results of this section are given for D = F®(Y, Y*), but, by Remark 5.1
and Theorem E, the structure theory goes over to every division F-algebra of
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degree 8 with involution. Our main concern will be to construct a maximal
subfield K of D which is Galois over C =Cent(D), with Galois group
Z.PZ,PZ, The strategy is simple; write K = K,K,K; where K; are linearly
disjoint, quadratic extensions of C. As in §4, the major step is to find K,. This
was first done by verifying formally a result about matrices (cf. Rowen and Schild
[7]), but in fact there is the following easy proof:

THEOREM 6.1. Let
d =Y, +Y;Y.-Y:],
d:=[Y;-Yid]dlY:- Y3 d]",
a=d+d,=[Y,- Y5, di][Y>- Y5 d] .

Then [C(a®): C]=2.

Proor. Lettingw =[Y;~ Y3, d,], we see that d,, w, and [ Y5~ Y3, d7] are all
symmetric with respect to (s). In particular, [C(d,): C] =4, by Proposition 5.3.
Let (J) be the involution given by (J): d» wd’w™, all d in D. Then J is
obviously of symplectic type, and

a’ =wa'w'=w(Ys- Y5, di]lw)yw™
:W(WVI[YJ— ;,dﬂ)wflz[Y3_Y;’dzllwilza_

Thus [C(a): C] = 4, by Proposition 5.3. One sees easily (by specialization) that
a’ & C. Thus, by Theorem 4.1, [C(a?): C] = 2. Q.E.D.

THEOREM 6.2. If 1+ 1#0 in C then there are subfields K, and K, of D such
that, with K, = C(a?), a as in Theorem 6.1, K; N (K;K, ) # 0 for each permutation
(i, 5, k) of (1,2,3), and K = K,K,K is a field. Moreover, K is a Galois extension of
C with Galois group 2, DZ,DZ,.

Proor. First we observe that the second sentence is an immediate conse-
quence of the first sentence. Now we give a nonexplicit proof of Theorem 6.2,
although it can be transformed easily into an explicit, constructive proof. First
observe that if [C(x): C] =2 then some element of C(x) is square central.
(Indeed, if x*+ax + B =0 for o, 8 in C, then (x + a/2) = (a/4)}-BEC. In
fact, it turns out, by [1, theor. VIII.13], that a = —tr(x)/4.)

So we have K, = C(x), with x square-central. Note that if K, is contained in a
central simple quaternion F-subalgebra Q, of D then we are done, because the
centralizer Q, of Q, is central C-simple of degree 4 and thus, by Theorem 4.5,
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we can find a maximal subfield K,K; of Q,, such that K,K,K, satisfies the
conclusion of this theorem. Thus, we shall assume K, is not contained in a
central simple quaternion F-subalgebra.

Now x » —x induces an automorphism of degree 2, of K over C. Thus, by
Corollary 5.5, we have an involution (*) of symplectic type (on D), such that
x* = —x. By Proposition 5.4, taking ¢ =1, we have an element y, such that
y*=y and yxy'= —x. Clearly [C(y):C]=4 (by Proposition 5.3), and
[y% x]=0, implying C(y*)CC(y), so [C(y):C]=2. If y’€K, then x,y
generate a quaternion C-subalgebra of D, contrary to assumption, so y>& K.
Hence [C(y®): C] =2 and C(y*)N K, is a proper C-subfield of C(y?) (and is
thus C). Let K, = C(y?).

K; has a nontrivial automorphism ¢ over C. Let ¢ be the automorphism of
KK, such that x* = — x and k® = k" for all k in K,. By Proposition 5.4, we
have z such that z* =2z, zxz '=x*"=x, and zkz™'= k" for all k in K,. Now
[C(z): C]=4 and 2%y’ = y*2?, implying C(2°)C C(z), so [C(z?): C]=2. Let
K;= C(2?). If K;C K\K; then z7 = a, + a,x + a;y*+ a,xy’ for suitable a; in C,
and also z?=(2%)*= a;~ a,x + a;y°— a.xy’, implying 2z°=2a, + 2a5y>?, so
2 € Ky; this would imply that y* and z generate a quaternion C-subalgebra of
D, contrary to assumption.

Thus, K3 Z K K. In particular, [K;: C] =2 and K;N KK, = C. An identical
argument shows KN K,K;= C. Finally, K;K; contains only (*)-symmetric
elements, so clearly K, N K,K; = C. Since x, y?, and z7 all commute, we see that
K = K K:K; is our desired field. Q.E.D.

In the proof of Theorem 6.2, it is immediate how to build y, based on Lemma
4.4. The choice of z is a bit more complicated, but not overly difficult. Once we
have found x,y?, and z? we could write these three elements in the form
(respectively) fici',1=i =3, where f, € F®{Y, Y*}; there is a canonical map
Z90Y, Y} = (Z/2Z)®{Y, Y*}, given by the map Z— Z/2Z, and if the images of
the f are nonzero, then this would yield Theorem 6.2 even in the characteristic 2
case. (We leave out the details.) It should be a simple matter to check this out (by
specialization), but we have not done this.
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